Что прочнее титан или алюминий?

Самые прочные металлы на Земле

Что прочнее титан или алюминий?

Первое качество, с которым ассоциируется у нас металл, это прочность. На самом деле прочность определяется несколькими свойствами, учитывая которые именно сталь и ее сплавы находятся в списке самых прочных металлов.

Что же такое прочность? Это способность материала выдерживать внешние нагрузки, при этом не разрушаясь. При оценке прочности металла учитывается много параметров и качеств: насколько хорошо металл сопротивляется разрыву, как он противостоит сжатию, каков порог перехода от упругого к пластическому состоянию, когда деформация материала становится необратимой, какова способность материала сопротивляться распространению трещин и т.п.

Прочные сплавы и природные металлы

Сплавы представляют собой комбинации разных металлов. Потребность получить самые разные качественные характеристики металлов, среди которых и прочность, привела к появлению различных сплавов. Одним из важных в этом смысле сплавов является сталь, которая представляет собой комбинацию железа и углерода. Итак, какие же металлы принято считать самыми прочными на Земле?

Поскольку для определения прочности металла необходимо учесть очень много факторов, трудно однозначным образом упорядочить металлы от самого «крепкого» до самого «слабого». В зависимости от того, какое свойство считается наиболее важным в каждом конкретном случае, и будет складываться расстановка сил прочности среди металлов.

Сталь и ее сплавы

Сталь — это прочный сплав железа и углерода, с добавками других элементов, таких как кремний, марганец, ванадий, ниобий и пр. Благодаря различным системам легирования стали можно получать совершенно разный комплекс свойств новых сплавов.

Так, высокоуглеродистая сталь — это сплав железа с высоким содержанием углерода — получается прочной, относительно дешевой, долговечной, она хорошо поддается обработке. Из недостатков стоит отметить низкую прокаливаемость и низкую теплостойкость, что делает углеродистую сталь уязвимой в агрессивной среде.

Сферы применения: из углеродистой стали изготавливают различные инструменты, детали машин и сложных механизмов, элементы металлоконструкций. Важным условием применения таких изделий является неагрессивная среда.

Сплав стали, железа и никеля – один из наиболее прочных сплавов. Существует несколько его разновидностей, но в целом легирование углеродистой стали никелем увеличивает предел текучести до 1420 МПа и при этом показатель предела прочности на разрыв доходит до 1460 МПа.

Сферы применения: сплавы на никелевой основе используют в конструкциях некоторых типов мощных атомных реакторов в качестве защитных высокотемпературных оболочек для предохранения от коррозии урановых стержней.

Нержавеющая сталь – коррозионностойкий сплав стали, хрома и марганца с пределом текучести до 1560 МПа и пределом прочности на разрыв до 1600 МПа. Как и все виды стали, этот сплав обладает высокой ударопрочностью и имеет средний балл по шкале Мооса.

Сферы применения: благодаря своим антикоррозийным свойствам нержавеющую сталь широко применяют в самых разных областях – нефтехимической промышленности, машиностроении, строительстве, электроэнергетике, кораблестроении, пищевой промышленности и для изготовления бытовых приборов.

Читайте также  Что дороже титан или золото?

Особо твердые сплавы

Сплавы на основе карбидов вольфрама, титана, тантала обладают твердостью, которой позавидует любой молот Тора.

Титан – это наиболее растиражированный в средствах массовой информации и кинематографе природный металл, который принято ассоциировать с суперпрочностью. Его удельная прочность почти вдвое выше, чем аналогичная характеристика легированных сталей. Он обладает самым высоким отношением прочности на разрыв к плотности из всех металлов. По этому показателю он обошел вольфрам, вот только по шкале твердости Мооса титан ему уступает. Тем не менее, титановые сплавы прочны и легки.

Сферы применения: титан и его сплавы часто используются в аэрокосмической промышленности. Из него делают элементы обшивки космических кораблей, топливные баки, детали реактивных двигателей. Активно используют его и в морском судостроении, строительстве трубопроводов для агрессивных сред и в качестве конструкционного материала.

Вольфрам с его самой высокой прочностью на растяжение среди всех встречающихся в природе металлов часто комбинируют со сталью и другими металлами для создания еще более прочных сплавов. К недостаткам вольфрама можно отнести его хрупкость и способность к разрушению при ударе.

Сферы применения: вольфрам применяют в металлургии для производства легированных сталей и различных сплавов, в электротехнической индустрии для изготовления элементов осветительных приборов, в машино- и авиастроении, в космической отрасли и химпроме. Сплав вольфрама и углерода (карбид вольфрама) используют для производства инструментов с режущими краями, таких как ножи и дисковые пилы, а также износостойких рабочих элементов горношахтного оборудования и прокатных валков.

Тантал обладает сразу тремя достоинствами – прочностью, плотностью и устойчивостью к коррозии. Он состоит в группе тугоплавких металлов, как и выше описанный вольфрам.

Сферы применения: тантал используется в производстве электроники и сверхмощных конденсаторов для персональных компьютеров, смартфонов, камер и для электронных устройств в автомобилях.

Инновационные сплавы

Существует ряд сплавов, которые появились совсем недавно, но уже успели завоевать признание благодаря своим «сверхкачествам» и активно используются в аэрокосмической сфере и медицине.

Алюминид титана – сплав титана и алюминия, который выдерживает высокие температуры и обладает антикоррозийными свойствами, но при этом он довольно хрупкий и недостаточно пластичный. Тем не менее, он нашел свое применение в производстве специальных защитных покрытий.

Сплав титана с золотом – еще один уникальный материал, который был разработан несколько лет назад группой ученых из университетов США. Основная задача, которая стояла перед учеными, создать материал крепче титана, который можно было бы применять в медицине для производства протезов, совместимых с биотканью. Дело в том, что титановые протезы, несмотря на свою прочность, изнашиваются относительно быстро, их приходится менять каждые 10 лет. А вот сплав титана с золотом оказался вчетверо более прочным, чем те сплавы, что сейчас используются в производстве протезов.

Источник: https://metinvestholding.com/ru/media/article/samie-prochnie-metalli-na-zemle

Прочность титана в сравнении со сталью

Что прочнее титан или алюминий?

Титан, углепластик, алюминий или сталь — Какой материал идеален для рамы?

John Olsen, Bicycling Magazine

Источник: — http://www.caree.org/bike101framematerials.htm

Перевод: — Сергей Судариков AKA Honzales 

Читайте также  Что тяжелее чугун или металл?

Версия текста: 1.0

Оригинал перевода данной статьи находится здесь: http://velosamara.org.ru/.
Перепечатка данного материала осуществлена с разрешения автора перевода.

От переводчика

Когда собрался писать статью про свойства разных материалов для рам — нашел в Интернете статью John Olsen про рамы из различных материалов.

Мне она показалась интересной и не противоречащей моим понятиям о прочности (все-таки я по образованию — специалист по прочности и долговечности авиационных конструкций, проработал несколько лет в лаборатории прочности ЛА в КуАИ).

Язык статьи показался мне вполне понятным для неспециалиста, что тоже большой плюс.

Честно говоря, не стал искать в русскоязычном Интернете перевод (может, и есть уже) и перевел статью сам. Olsen осветил большую часть проблем, о которых я собирался писать — не вижу смысла повторять то, что уже написано и вполне, на мой взгляд, понятно, толково и справедливо.

В статье не упоминаются принятые среди специалистов термины «удельная прочность» и «удельная жесткость», означающие отношения значений прочности или жесткости к плотности материала, и характеризующие, насколько материал прочный (или жесткий) в расчете на единицу веса, но косвенно дается понять, что эти характеристики приняты конструкторами во внимание.

И еще один момент — следует различать, когда идет речь о прочности (жесткости) материала, а когда — о тех же свойствах конструкции. В конструкции (раме) для увеличения прочности и жесткости увеличивают диаметр труб, меняют форму их сечения, применяют различную (в том числе переменную по длине трубы) толщину стенок и т.д.

— и все это — для компенсации недостаточных свойств материала. С другой стороны, труба большего диаметра обычно весит больше, чем такая же, но меньшего диаметра и из того же материала — но большая труба жестче. Есть еще и технологические факторы, не затронутые в данной статье (легкость в обработке, свариваемость и т.д.

), но влияющие на выбор конструктора.

Со своей стороны, я решил написать статью о различиях свойств алюминиевых сплавов 6061, 7005 и 7075.

  • Введение
  • Насколько жёсткий Ваш байк?
  • Сталь
  • Алюминий
  • Титан
  • Углепластик

Введение

Жесткость, вес и прочность велосипедных рам определяются множеством факторов, только некоторые из которых определяются исключительно свойствами материала. Конструкция рамы, оптимальная для одного материала, будет отличаться от оптимальной для другого, поскольку материалы сильно различаются по прочности, жесткости и плотности (весу).

Лучшие алюминиевые рамы имеют толстые тонкостенные трубы и не изгибаются из стороны в сторону, когда вы разгоняетесь. Лучшие стальные рамы имеют тонкостенные трубы малого диаметра и заметно изгибаются при разгоне. Титановые и углепластиковые (карбоновые) рамы находятся посередине между ними.

Опытные велосипедисты часто делятся на два лагеря, сторонники стальных рам критикуют излишнюю жесткость алюминиевых рам и их фанатов, порицающих гибкость легких стальных рам. Мы объясним преимущества и неудобства большинства материалов рам и сравним их на графике, отражающем, насколько они жесткие по сравнению со сталью.

Сравнение жесткости (относительно стали) для различных материалов рам

Reynolds 853 Steel Alloy — Стальной сплав Рейнольдс 853
1010 Steel Alloy — Стальной сплав 1010
Unidirectional Carbon/Epoxy — Однонаправленный углепластик на основе эпоксидной смолы
6Al/4V Titanium Alloy — Титановый сплав 6Al/4V
3Al/2.5V Titanium Alloy — Титановый сплав 3Al/2.5V
7075 Aluminum Alloy — Алюминиевый сплав 7075
6061 Aluminum Alloy — Алюминиевый сплав 6061
Carbon Weave/Epoxy — Углепластик плетеной структуры на основе эпоксидной смолы
Читайте также  В чем разница Красного и желтого золота?

Сталь

Сталь жесткая, но плотная (тяжелая). Легкие рамы адекватной жесткости и прочности делают из труб относительно маленького диаметра, но сталь — неподходящий материал для легких рам или больших сильных наездников. Стальные рамы из низкопрочных сталей (недорогие) нуждаются в толстостенных трубах, чтобы быть достаточно прочными, и они тяжелы.

Более прочная сталь позволяет изготавливать тонкостенные трубы, но тогда понижается жесткость. Последние разработки включают «закаливаемые на воздухе» стали очень высокой прочности, типа Reynolds 853. (В отличие от большинства других типов сталей, закаливаемые воздухом стали приобретают, а не теряют прочность, когда они охлаждаются после сварки).

Все стали имеют ту же самую жесткость, независимо от прочности — 853 не более жесткая, чем 1010 (низкопрочная сталь).

Плюсы:

  • Лучшие стальные сплавы очень прочны
  • Лучшая жесткость повсюду
  • Долговечны
  • Закаливаемые на воздухе стальные сплавы делают возможным ультравысокую прочность

Минусы:

  • Должны быть тяжелыми — материал, неподходящий для больших легких рам
  • Ржавеют

Алюминий

Алюминиевые рамы могут быть очень жесткими и легкими, потому что плотность алюминия очень мала, но трубы рамы должны быть больше в диаметре для компенсации более низкой прочности.

Однако сегодня эти «толстотрубные» рамы — распространенная конструкция для качественных велосипедов. Недавние усовершенствования включают добавки в сплав Скандия, элемента, который увеличивает прочность.

В целом, алюминий — хороший материал для жестких, легких рам для райдеров всех размеров. Это — также один из двух материалов, которые хорошо подходит для рам нетрадиционных форм.

Титан

Титан имеет превосходный баланс свойств для создания рам, и дает лучшую комбинацию долговечности и веса. Сплавы титана наполовину столь же жесткие как сталь, но также и вполовину менее плотные. Лучшие сплавы титана сопоставимы по прочности с самыми прочными сталями.

Жесткие титановые рамы требуют труб большего диаметра, чем сопоставимые стальные рамы, но не столь большого диаметра, как алюминий. Титан — очень коррозионно стойкий, и очень легкие рамы могут быть сделаны достаточно жесткими и достаточно прочными для больших райдеров. Большинство титановых рам — из сплава 3Al/2.5V (3% алюминия/2.

5% ванадия, остальное — титан), хотя все чаще используется более прочный сплав 6Al/4V (6% алюминия/4% ванадия, остальное титан).

Углепластик

Отдельные волокна углерода чрезвычайно прочны и жестки, но эти их свойства бесполезны, если волокна не выстроены в строгую структуру и не скреплены между собой сильным «клеем» (обычно эпоксидная смола).

В отличие от металлов, в которых прочность и жесткость являются почти теми же самыми во всех направлениях, композиты из углеродных волокон могут производиться с более высокими прочностными и жесткостными характеристиками в тех направлениях, где это нужно (например, жесткий по сторонам и гибкий вертикально).

Источник: https://varimtutru.com/prochnost-titana-v-sravnenii-so-stalyu/