Диффузионная сварка керамики и металла

Содержание

Сварка металлов с керамическими и стеклообразными материалами

Диффузионная сварка керамики и металла

» Статьи » Профессионально о сварке » Технологии сварки

Рекомендуем приобрести:

Установки для автоматической сварки продольных швов обечаек — в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки — в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Стекло — аморфный материал, получаемый путем сплавления стеклообразующих оксидов типа SiO2, В2О3, Р2О5, Al2O3. В соответствии с этим различают классы стекол — силикатные, боратные, германатные, фосфатные, алюминатные и др. Наибольшее распространение получили силикатные стекла (табл 36.1)

По назначению стекла могут подразделяться на большие группы:

Оптические стекла — это однородные прозрачные неокрашенные специально стекла (табл. 36.2).

Электротехнические стекла находят применение главным образом в электровакуумной промышленности. Ряд электротехнических стекол были специально разработаны для получения надежных соединений с металлами. Коэффициенты их линейного расширения в некоторых случаях близки с отдельными металлами и сплавами (табл. 36.3).

Определяющим свойством стекла является его способность постепенно и непрерывно изменять вязкость в определенном интервале температур. Вязкость стекла в точке трансформации равна 1012.3 Па*с. До температуры трансформации стекло находится в хрупком состоянии, а выше этой точки оно обратимо переходит в вязкое состояние и не разрушается ни при механических ударах, ни при внезапном резком увеличении температуры.

Ситаллы

Ситаллы — это искусственные материалы, полученные путем кристаллизации стекол определенного состава. Для получения ситаллов необходимо выбрать соответствующий состав стекла, ввести в этот состав катализатор кристаллизации и сварить стекло, а затем провести специальную термическую обработку.

Назначение термической обработки состоит в том, чтобы обеспечить, во-первых, образование максимального числа центров кристаллизации; во-вторых, необходимую степень закристаллизованности; в-третьих, заданный фазовый состав ситалла.

В зависимости от химической природы ситаллы классифицируются следующим образом: ситаллы сподуменового состава (СО—115М) ситаллы кордиеритового состава и свинецсодержащего состава.

Керамика

К традиционной керамике относят изделия из глины и кремнезема, которые являются основными компонентами керамики, фаянса, фарфора, эмалей и других материалов.

В настоящее время наряду с многокомпонентной оксидной керамикой широко используют в промышленности несколько групп новых материалов:

1. Керамика чистых оксидов на основе Al2O3 (корунды), SiO2, ZrО2, ТhО2, BeO, MgO, а также шпинель (MgAl2O4) и форстерит Mg2SiO4 (табл. 36 4).

2. Бескислородная керамика на основе нитридных и карбидных соединений (Si3N4, SiC, TiC и др), а также комбинированная керамика на основе оксикарбидов и оксинитридов (миалоны и др.).

3. Магнитная керамика, основа которой — оксиды Fe2O3, MnO, NiO (ферриты).

4. Пьезокерамика на основе титаната, цирконата свинца (ЦТС-19).

Кроме того, промышленность постоянно разрабатывает новые виды керамических материалов. Наиболее распространенной керамикой являются разные марки керамики на базе оксида алюминия, так называемые высокоглиноземистые керамики. Так, на основе оксида алюминия разработана большая группа керамических материалов (табл. 36.4).

Керамика относится к хрупким материалам, поэтому ее реальная прочность примерно на три порядка меньше теоретической. Прочность керамических материалов определяется их составом и микроструктурой (табл. 36.5).

Металлы и сплавы для сварки со стеклом, ситаллом и керамикой

При правильном конструировании сварного узла температурные коэффициенты линейного расширения (ТКЛР) стекла, керамики и металла должны быть максимально согласованы. В противном случае напряжения, возникающие при изменении температуры, могут привести к разрушению сварного соединения. Наиболее широко для соединения со стеклом и керамикой используют железоникблевые сплавы, ковар, нержавеющую сталь, а из чистых металлов Сu, Ni, Ti, Al, Mo, Wi и некоторые другие. Основные свойства металлов, которые могут быть использованы при разработке металлокерамических и металлостеклянных узлов, приведены в табл. 36.6.

Свариваемость материалов

Способы сварки плавлением, как правило, непригодны для соединения металлов с керамическими и стеклообразными материалами вследствие природной несовместимости соединяемых композиций. Наибольшую перспективу создания неразъемных соединений из стекла и керамики имеет диффузионная сварка (ДС).

Читайте также  Сварка вертикальных швов инвертором для начинающих

На свариваемость стекла, ситаллов и керамики с металлами существенное влияние оказывает их химический состав, структура, состояние поверхности, наличие и концентрация неравновесных дефектов, а также ряд других физико-химических свойств соединяемых материалов. Так, на свариваемость керамики с металлами влияет ее микроструктура, т. е. увеличение размеров зерен керамики, содержащей стеклофазу, приводит к уменьшению протяженности границ и, следовательно, участков наиболее активного взаимодействия.

Наличие стеклофазы в керамике ускоряет процесс сварки, соединение получается более прочным. При сварке керамики, не содержащей стеклофазы, например ВК100-2, с металлами, требуются большие энергозатраты, чем для керамики с наличием стеклофазы (ВК94-1).

Природа и механизм образования соединения

Необходимым условием образования сварного соединения металлов со стеклом и керамикой является химическое взаимодействие, механизм которого зависит от свойств элементов. В условиях ДС наиболее вероятны две топохимические реакции — присоединения (1) и замещения (2):

По механизму реакции (1) взаимодействуют d-элементы периодической системы Менделеева, практически все переходные металлы и сплавы на их основе (Fe, Ni, Со, W, Mo, Мn и т. д.), а по схеме реакции замещения (2) взаимодействуют s- и р-элементы — непереходные металлы (Al, Mg, Be, Li) и их сплавы. Поэтому разработка технологии ДС стекла и керамики с металлами должна производиться как с учетом физико-химических свойств соединяемых композиций, так и с учетом топохимических процессов, происходящих в зоне контакта.

Причины образования дефектов

Наиболее распространенным дефектом металлостеклянных и металлокерамических узлов является образование трещин из-за высокого уровня остаточных напряжений, вызванных большим различием коэффициентов термического расширения соединяемых материалов. Согласование теплового расширения соединяемых материалов устраняет опасность возникновения термических напряжений. Соединять материалы с несогласованными ТКЛР также возможно, но толщины металлической детали при этом сильно ограничены.

Подготовка стекла, ситалла и керамики

Химическая очистка в сочетании с ультразвуковой обработкой стекла и керамики является наиболее эффективным способом получения качественной поверхности под сварку.

Термическое обезжиривание обычно применяется в сочетании с химической очисткой, а очистка в поле ультразвука в сущности является разновидностью химической очистки, так как в качестве рабочих жидкостей применяются различные химические вещества и соединения.

Очистка поверхности перед диффузионной сваркой в сущности сводится к трем основным процессам: обезжириванию, удалению механических загрязнений и травлению поверхности. Наиболее часто применяют первые два способа обработки, а к травлению прибегают только в случае необходимости изменения структуры поверхностного слоя.

Подготовка металлов к сварке

Химические активные металлы (s- и р-элементы) и сплавы на их основе перед соединением со стеклом, ситаллом и керамикой тщательно очищаются от посторонних загрязнений, а также от оксидов, присутствующих на их поверхности. Переходные металлы (d-элементы) и сплавы на их основе, как правило, перед соединением со стеклом и керамикой проходят специальную обработку, связанную с созданием на их поверхности тонких слоев оксидов низшей валентности.

Читайте также  Сварочные материалы для полуавтоматической сварки

Режимы сварки

При разработке технологии ДС стекла и керамики с металлами широко используют промежуточные прокладки. Назначение прокладок главным образом сводится к снижению энергетических параметров сварки, остаточных напряжений в зоне соединения и активации соединяемых поверхностей. Некоторые режимы диффузионной сварки стекла и керамики с металлами приведены в табл. 36.7.

Особенности конструкции металлостеклянных и металлокерамических узлов

Конструкции узлов металлов с неметаллами разделяют на три группы (рис. 36.1).

1. Соединения, в которых металл охватывает стекло или керамику, при этом ТКЛР металла имеет большее значение, чем неметалла. Такие соединения называют охватывающими (рис. 36.1, а—в).

2. Соединения, в которых керамика или стекло охватывают металлическую деталь, называют внутренними спаями или соединениями (рис. 36.1, г).

3. Соединения, когда металлическая деталь сочленяется с неметаллической по плоскости торца; поэтому они и называются плоскими или торцовыми соединениями (рис. 36.1, д—ж).

Возникновение больших и опасных напряжений в таких соединениях компенсируют следующими способами: использованием металлов небольших толщин и возможно меньшего диаметра; применением для соединений пластичных материалов, позволяющих несколько ослаблять напряжения; использованием более низких температур при получении соединения, а также применением медленного охлаждения в процессе сварки с чередованием промежуточных отжигов.

Источник: https://www.autowelding.ru/publ/1/1/svarka_metallov_s_keramicheskimi_i_stekloobraznymi_materialami/2-1-0-340

Диффузионная сварка металлов в вакууме. Её сущность, технология, применение. Установка и другое оборудование для сварки

Диффузионная сварка керамики и металла

>>Способы сварки>>Сварка давлением >>Диффузионная сварка

Диффузионная сварка металлов представляет собой вид сварки давлением с применением нагрева, при которой сваривание получается за счёт взаимной диффузии атомов соединяемых деталей.

Сваривание происходит за счёт пластической деформации кромок при температуре ниже температуры плавления, т.е. в твёрдом состоянии. Нагрев может происходить с применением многих известных источников тепла. Наиболее часто на практике применяются индукционный, радиационный, электронно-лучевой способ нагрева, нагрев электрическим током, тлеющим разрядом и нагрев в расплаве солей.

В большинстве случаев, диффузионную сварку выполняют в вакууме, но на практике её можно провести в среде защитных газов, восстановительных газов, или в их смеси. Если свариваются металлы, мало подверженные к воздействию кислорода, то процесс возможен даже на воздухе.

Приборостроение

В современных приборах зачастую используются узлы и элементы, изготовленные из разнородных материалов, в том числе и неметаллических (керамика, стекло и пр.) Технологические особенности диффузионной сварки позволяют использовать её для производства металлокерамических и катодных узлов, полупроводниковых соединений. При этом существуют специальные конвейерные системы для диффузионной сварки, которые позволяют с высокой степень автоматизировать процесс сварки в условиях непрерывного круглосуточного производства.

Крупногабаритные заготовки и полуфабрикаты

Диффузионная сварка хорошо подходит для производства крупногабаритных заготовок, имеющих сложную конфигурацию, которые невозможно получить механической обработкой, литьём или штамповкой. Или же если получение этими методами экономически нецелесообразно. Диффузионная сварка существенно повышает коэффициент использования металла (КИМ) заготовок, а в ряде случаев, заготовки и вовсе невозможно получить другими способами сварки. Наиболее эффективно применение диффузионной сварки в опытном, единичном и мелкосерийном производстве.

Производство композитных листов

С помощью диффузионной сварки можно изготовить большие заготовки значительной толщины, из которых, в последующем, прокаткой получить слоистые композиционные листы.

Совмещение сварки с процессом формообразования

Тонкостенные конструкции из множества слоёв с наполнителем (типа гофры, соты, рёбра, панели и др.) можно получить, если совместить процессы диффузионной сварки и формообразования в режиме сверхпластичности.

Для этого сначала листовые элементы сложно панели или другой конструкции сваривают в плоские пакеты. Для этого, до начала сборки пакета на листы наносят барьерное покрытие. Далее пакет герметизируют по всему периметру, создают вакуум и запускают процесс сварки.

Читайте также  Как сделать точечную сварку для сварки аккумуляторов?

После этого во внутреннюю полость подают жидкость или газ под давлением, которые раздувают заготовку и она принимает форму внутренней поверхности матрицы. Подробная схема этого процесса представлена на рисунке:

Схемы процесса диффузионной сварки

На практике применяют две технологические схемы процесса диффузионной сварки, которые различаются характером действия силы или напряжения.

В одной схеме используют постоянную нагрузку (рисунок а) слева), величина которой меньше предела текучести материала. При таком процессе в металле аналогичны ползучести. Эта технология получила название диффузионной сварки по схеме свободного деформирования. Это наиболее распространённый способ сварки, т.к. его осуществить проще всего.

По другой схеме (рисунок б) слева) пластическая деформация происходит посредством специального устройства, которое в процессе сварки двигается с регулируемой скоростью. Эта технология получила название диффузионной сварки по схеме принудительного деформирования.

Преимущества

1. С помощью данного способа сварки относительно легко получить сварные соединения большинства конструкционных материалов: металлов и сплавов на их основе.

2. Диффузионной сваркой можно сваривать как однородные, таки разнородные материалы, включая материалы с сильно отличающимися свойствами (например, металл и керамику).

3. Если соединяются однородные материалы, то по своей структуре и свойствам сварное соединение не отличается от основного металла.

4. Одной из особенностей диффузионной сварки является возможность ограничения общей деформации свариваемых кромок. При необходимости, это позволяет получить высокоточные (прецизионные) соединения, не требующие последующей механической обработки.

5. При использовании схемы принудительного деформирования цикл сварки можно ограничить или прекратить в любой момент.

6. Для управления структурой и свойствами сварного соединения могут применяться принципы термомеханической обработки, объединённые с циклом сварки. Особенно при схеме с принудительной деформацией.

7. При изготовлении многослойных тонкостенных конструкций с наполнителем сложной формы (гофры, соты, рёбра и т.п.) можно совмещать процессы диффузионной сварки и формообразования в режиме сверхпластичности. Это хорошо подходит для титановых или алюминиевых сплавов.

8. В серийном производстве возможна многослойная сварка простых изделий (пакетная сварка), при этом процесс сварки легко автоматизировать, получая высокую производительность.

9. Диффузионную сварку можно использовать для производства полуфабрикатов и заготовок для последующей обработки.

10. Этот способ сварки позволяет получить объёмные заготовки сложной конфигурации и получить существенную экономию материала по сравнению с другими способами получения подобных заготовок.

Недостатки

1. В большинстве случаев производительность сварки достаточно низкая из-за того, что сам процесс её довольно длительный.

2. Сварочное оборудование (особенно для диффузионной сварки в вакууме, а не в защитной среде) достаточно сложное, как и вся технологическая оснастка. Кроме того, оно подвергается одновременному нагреванию и нагрузке, что предъявляет высокие требования к технологическому уровню производства.

3. Габариты получаемых изделий ограничены типом применяемого сварочного оборудования.

4. Высокие требования к качеству соединяемых поверхностей делают дорогим процесс диффузионной сварки.

5. Применяемые на практике методы неразрушающего контроля сварных швов малоэффективны для соединений, полученных диффузионной сваркой.

Типы и конструкция получаемых соединений

С помощью диффузионной сварки можно получить практически все виды соединений, применяемых на практике. При этом главным требованием является обеспечение плотного прилегания свариваемых участков по всей плоскости касания.

В случае повышенных требований к сварному соединению после сварки применяют механическую обработку для удаления дефектов в сварном соединении (непроваров). Или для получения более надёжной геометрии в тавровых и угловых соединениях (например, для получения радиуса скругления в углу, тем самым, уменьшив концентратор напряжений).

Подготовка свариваемых участков

Свариваемые участки подготавливают обычно при помощи механической обработки, при этом их шероховатость должна быть Ra

Источник: https://taina-svarki.ru/sposoby-svarki/svarka-davleniem/diffuzionnaya-svarka-metallov-v-vakuume.php