Для изготовления постоянных магнитов используют

3 разных типа магнитов и их применение

Для изготовления постоянных магнитов используют

Магниты — это материалы, которые генерируют поле, которое притягивает или отталкивает некоторые другие материалы (например, железо и никель) с определенного расстояния. Это невидимое поле, известное как магнитное поле, отвечает за ключевые свойства магнита.

Древние люди использовали магниты по крайней мере с 500 г. до н.э., и самые ранние известные описания таких материалов и их характеристики происходят из Китая, Индии и Греции около 25 веков назад. Однако искусственные магниты были созданы еще в 1980-х годах.

Очевидно, что не все магниты состоят из одних и тех же веществ, и поэтому их можно разделить на разные классы в зависимости от их состава и источника магнетизма. Ниже приведен подробный список трех основных типов магнитов с указанием их свойств, прочности, а также промышленного и непромышленного применения.

1. Постоянные магниты

После намагничивания постоянные магниты могут сохранять магнетизм в течение продолжительного времени. Они сделаны из материалов, которые могут намагничиваться и создают собственное постоянное магнитное поле.
Обычно постоянные магниты изготавливаются из четырех различных типов материалов:

I) Ферритовые магниты

Стек ферритовых магнитов | Изображение предоставлено: Викимедиа

Ферритовые магниты (также называемые керамическими магнитами) являются электроизоляционными. Они темно-серого цвета и выглядят как карандашный грифель.

Ферриты обычно представляют собой ферромагнитные керамические соединения, получаемые путем смешивания больших количеств оксида железа с металлическими элементами, такими как марганец, барий, цинк и никель. Некоторые ферриты имеют кристаллическую структуру, например ферриты стронция и бария.

Они довольно популярны благодаря своей природе: они не подвержены коррозии и, следовательно, используются для продления жизненного цикла многих продуктов. Ферритовые магниты могут использоваться в чрезвычайно жарких условиях (до 300 градусов Цельсия), и стоимость изготовления таких магнитов также низкая, особенно если они производятся в больших объемах.

Они могут быть далее подразделены на «твердые», «полужесткие» или «мягкие» ферриты, в зависимости от их магнитных свойств.

Поскольку твердые ферриты трудно размагничивать, они обладают высокой коэрцитивной силой. Они используются для изготовления магнитов, например небольших электродвигателей и громкоговорителей. Мягкие ферриты, с другой стороны, имеют низкую коэрцитивную силу и используются для изготовления электронных индукторов, трансформаторов и различных микроволновых компонентов.

II) магниты Алнико

Магнит-подкова из алнико 5 | Эта U-образная форма образует мощное магнитное поле между полюсами, позволяя магниту захватывать тяжелые ферромагнитные материалы.

Магниты алнико состоят из алюминия (Al), никеля (Ni) и кобальта (Co), отсюда и название al-ni-co. Они часто включают титан и медь. В отличие от керамических магнитов, они являются электропроводящими и имеют высокие температуры плавления.

Чтобы классифицировать их (основываясь на их магнитных свойствах и химическом составе), Ассоциация производителей магнитных материалов присвоила им номера, такие как Alnico 3 или Alnico 7.

Алникос был самым сильным типом постоянных магнитов до развития редкоземельных магнитов в 1970-х годах. Известно, что они создают высокую напряженность магнитного поля на своих полюсах — до 0,15 Тесла, что в 3000 раз сильнее, чем магнитное поле Земли.

Сплавы Alnico могут сохранять свои магнитные свойства при высоких рабочих температурах, вплоть до 800 градусов Цельсия. Фактически, они являются единственными магнитами, которые имеют магнетизм при нагревании раскаленным докрасна.

Эти магниты широко используются в бытовых и промышленных применениях: несколько примеров — это магнетронные трубки, датчики, микрофоны, электродвигатели, громкоговорители, электронные трубки, радары.

III) Редкоземельные магниты

Как следует из названия, редкоземельные магниты изготавливаются из сплавов редкоземельных элементов. Это самый сильный тип постоянных магнитов, разработанный в 1970-х годах. Их магнитное поле может легко превышать 1 Тесла.

Два типа редкоземельных магнитов — самарий-кобальтовые и неодимовые магниты. Оба уязвимы для коррозии и очень хрупкие. Таким образом, они покрыты определенным слоем (слоями), чтобы защитить их от сколов или поломок.

Самарий-кобальтовые магниты состоят из празеодима, церия, гадолиния, железа, меди и циркония. Они могут сохранять свои магнитные свойства при высоких температурах и обладают высокой устойчивостью к окислению.

Из-за их меньшей напряженности магнитного поля и высокой стоимости производства они используются реже, чем другие редкоземельные магниты. В настоящее время они используются в настольном ядерно-магнитно-резонансном спектрометре, высококачественных электродвигателях, турбомашиностроении и во многих областях, где производительность должна соответствовать изменению температуры.

Неодимовые магниты, с другой стороны, являются наиболее доступным и сильным типом редкоземельных магнитов. Они представляют собой тетрагональную кристаллическую структуру, изготовленную из сплавов неодима, бора и железа.

Благодаря своим меньшим размерам и небольшому весу они заменили ферритовые и алникомагниты в многочисленных применениях в современных технологиях. Например, неодимовые магниты в настоящее время используются в головном приводе для компьютерных жестких дисков, электродвигателей для аккумуляторных инструментов, механических переключателей электронных сигарет и динамиков мобильных телефонов.

IV) одномолекулярные магниты

Универсальный внутриклеточный белок, называемый ферритином, считается магнитом с одной молекулой. Он хранит железо и выпускает его контролируемым образом.

К концу 20-го века ученые узнали, что некоторые молекулы [которые состоят из ионов парамагнитного металла] могут проявлять магнитные свойства при очень низких температурах. Теоретически они способны хранить информацию на уровне магнитных доменов и обеспечивать гораздо более плотный носитель, чем традиционные магниты.

Одномолекулярные магниты состоят из кластеров марганца, никеля, железа, ванадия и кобальта. Было обнаружено, что некоторые цепные системы, такие как одноцепные магниты, сохраняют магнетизм в течение длительного периода времени при более высоких температурах.

Исследователи в настоящее время изучают монослои таких магнитов. Одним из ранних соединений, которое было исследовано в качестве одно-молекулярного магнита, является додекануклеарная марганцевая клетка.

Потенциальные возможности применения этих магнитов огромны. К ним относятся квантовые вычисления, хранение данных, обработка информации и биомедицинские приложения, такие как контрастные агенты МРТ.

2. Временные магниты

Некоторые объекты могут быть легко намагничены даже слабым магнитным полем. Однако, когда магнитное поле удалено, они теряют свой магнетизм.

Временные магниты различаются по составу: они могут быть любым объектом, который действует как постоянный магнит в присутствии магнитного поля. Например, магнитомягкий материал, такой как никель и железо, не будет притягивать скрепки после удаления внешнего магнитного поля.

Когда постоянный магнит подносится к группе стальных гвоздей, гвозди прикрепляются друг к другу, а затем к постоянному магниту. В этом случае каждый гвоздь становится временным магнитом, а когда постоянный магнит удаляется, они больше не прикрепляются друг к другу.

Читайте также  Изготовление шпоночного паза на валу

Временные магниты в основном используются для изготовления временных электромагнитов, сила которых может варьироваться в соответствии с требованиями. Они также используются для разделения материалов, сделанных из металла, на складах металлолома и дают новый импульс современной технологии — от высокоскоростных поездов до высокотехнологичного пространства.

3. Электромагнит

Электромагнит притягивающий железные опилки

Электромагнит был изобретен британским ученым Уильямом Стердженом в 1824 году. Затем он был систематически усовершенствован и популяризирован американским ученым Джозефом Генри в начале 1830-х годов.

Электромагниты представляют собой плотно намотанные витки провода, которые функционируют как магниты при прохождении электрического тока. Его также можно классифицировать как временный магнит, поскольку магнитное поле исчезает, как только ток отключается.

Полярность и напряженность магнитного поля, создаваемого электромагнитом, можно регулировать, изменяя направление и величину тока, протекающего через провод. Это главное преимущество электромагнитов перед постоянными магнитами.

Для усиления магнитного поля катушка обычно наматывается на сердечник из «мягкого» ферромагнитного материала, такого как мягкая сталь. Провод, свернутый в одну или несколько петель, называется соленоидом.

Эти типы магнитов широко используются в электрических и электромеханических устройствах, включая жесткие диски, громкоговорители, жесткие диски, трансформаторы, электрические звонки, МРТ-машины, ускорители частиц и различные научные приборы.

Электромагниты также используются в промышленности для захвата и перемещения тяжелых предметов, таких как металлолом и сталь.

Источник: https://new-science.ru/3-raznyh-tipa-magnitov-i-ih-primenenie/

Из чего изготавливают постоянные магниты — блог Мира Магнитов

Для изготовления постоянных магнитов используют

Любые постоянные магниты изготавливают из ферромагнитных веществ. К группе этих материалов относятся железо, кобальт, гадолиний, а также множество химических соединений и сплавов. Все эти вещества даже после выключения намагничивающего поля сохраняют намагниченность. В зависимости от типа материала, используемого для изготовления магнитов, выделяют такие группы изделий:

Феррит – это материал, магнитная проницаемость которого значительно превосходит соответствующие показатели черных металлов. Разработанные на его основе в 50-х гг. XX века магниты стали более доступной и практичной альтернативой дорогостоящим магнитам из металлических сплавов. В качестве основы материала используется оксид железа Fe2O3 в соединении с ферритом бария или ферритом стронция. Специфика такого состава обуславливает хрупкость и твердость готовых изделий, которые могут разрушиться при ударе или сгибе. Учитывая, из чего изготавливают постоянные магниты на основе ферритов, для материала характерны невысокие показатели остаточной индукции, определяющие сравнительно недолгий срок службы магнита. Тем не менее ферритовые магниты обладают рядом бесспорных достоинств:           ·         Устойчивость к размагничиванию.            ·    Стойкость к коррозийным поражениям.

Литые магниты

Изобретенные в 30-х гг. XX века литые магниты (монокристаллические) широко используются в ряде научных и промышленных отраслей благодаря целому ряду уникальных достоинств. Изделия получили название Альнико по названию элементов, входящих в состав его сплава: алюминий, никель и кобальт. Материал с высокой остаточной намагниченностью характеризуется низкой коэрцитивной силой. Из-за этого его можно легко размагнитить и намагнитить обратно.

Магниты Альнико остаются востребованными и незаменимыми в целом ряде промышленных отраслей благодаря следующим преимуществам:           ·     Устойчивость к нагреву. Максимальный показатель рабочей температуры для магнитов Alnico составляет                    +450..+550⁰C.           ·    Стойкость к коррозии. Материал сохраняет свои эксплуатационные качества в условиях высокой влажности                и при непосредственном контакте с водой.

Редкоземельные магниты

В настоящий момент вопрос, из чего делают постоянные магниты с лучшими эксплуатационными свойствами, имеет только один ответ – из элементов лантаноидной группы. Благодаря непревзойденным показателям магнитной силы редкоземельные супермагниты открывают широкие возможности для создания более компактных и простых магнитных конструкций практически в любых сферах деятельности.

Магниты на основе лантаноидов сочетают большую коэрцитивную силу и высокую сопротивляемость внешним магнитным полям. Наиболее распространены две группы редкоземельных сплавов:

  •           ·    Неодим, железо и бор (неодимовые магниты). Если вам нужен действительно сильный магнит, то лучшего решения просто не найти. Этот материал используется для производства поисковых магнитов, которые при собственной массе в 2-3 кг способны удерживать объекты весом 300 кг и больше. Учитывая, как делают постоянные магниты на основе неодимового сплава, следует обеспечить качественную защиту порошкового материала. При нарушении целостности оцинкованного покрытия он поражается ржавчиной даже при обычной влажности воздуха.
  •           ·    Самарий и кобальт (самариевые магниты). При своей сравнительно высокой цене этот материал обладает такими существенными преимуществами, как устойчивость к коррозии и отсутствие ограничений в механической обработке. Также самариевые магниты характеризуются стойкостью к высоким температурам они сохраняют свои магнитные свойства даже при +350⁰C.

Выгодно заказывайте любые магниты и изделия на их основе

Интернет-магазин «Мир магнитов» предлагает вам богатый ассортимент магнитов и изделий на их основе по самым привлекательным оптовым и розничным ценам.  У нас можно купить неодимовый магнит 50х30 дешево. Выбирайте подходящие изделия с учетом эксплуатационных условий и заказывайте их с выгодными условиями доставки. Чтобы уточнить у специалиста любые технические вопросы относительно выбора подходящего магнита, свяжитесь с нами по телефону 8 (495) 662 49 15 или по email info@mirmagnitov.ru.

Виктория Костюченко

9001 0

  • Магнитная жидкость: создавай ферромагнитные скульптуры Удивительная жидкость превращается в необычные фигуры.
  • Загляни внутрь Smart Cover для iPad Вы ведь хотели узнать, как он работает? Самое время разобраться.
  • Сочетание медной трубы с неодимовым магнитом это просто фокус удивляющий всеx Вы убедитесь в этом, когда сами попробуете провести такой эксперимент.

Источник: https://mirmagnitov.ru/blog/issledovaniya/iz-chego-izgotavlivayut-postoyannye-magnity/

Свойства неодимовых магнитов

Для изготовления постоянных магнитов используют

Нам часто задают вопросы — «Что такое неодимовый магнит?», «Какова его сила?», «Как долго он сохранят свою намагниченность?», «Чем он лучше обычного, ферритового магнита?». Сейчас мы попробуем разобраться с этим и ответим на всё вопросы по порядку.

Неодимовые магниты NdFeB самые сильные на сегодняшний день постоянные магниты. Изготавливаются они из сплава, содержащего редкоземельный материал неодим Nd, а также железо и бор.

Неодимовые магниты имеют очень высокие показатели остаточной магнитной индукции и устойчивости к размагничиванию. По этим показателям они в разы превосходят обычные чёрные, ферритовые, магниты. Что делает их гораздо более привлекательными при использовании в изделиях и оборудовании, где требуются сильное магнитное поле. Единственный серьёзный недостаток этих магнитов — это довольно высокая цена.

При чём, с течением времени, она имеет тенденцию к росту, так как потребности мировой промышленности в сильных магнитах так же постоянно растут. Технический прогресс ускорятся год от года, постоянно выходят новые модели смартфонов, телевизоров, компьютеров, навигаторов и тому подобных высокотехнологичных гаджетов, при производстве которых используются редкоземельные металлы.

Основным же поставщиком, так сказать лидером глобального рынка, является Китайская Народная Республика, контролирующая до 95% поставок редкоземельных материалов, а соответственно и цены на них. Очередное резкое повышение цен было отмечено летом 2017 года, когда за 3 месяца цена на неодим выросла более чем на 50 процентов.

Читайте также  Технология изготовления сахара из сахарной свеклы

Технические характеристики неодимовых магнитов

Магнитные характеристики закладываются на стадии изготовления магнита и не могут быть изменены в последствии. Основные же параметры это остаточная магнитная индукция и устойчивость к размагничиванию (коэрцитивная сила). Магнитная индукция измеряется в Теслах (Тс) и Гауссах (Гс), 1 Тл = 10000 Гс. Неодимовые магниты имеют остаточную индукцию порядка 1,2-1,4 Тл (12000-14000 Гс). Следует учитывать, что подобные значения могут быть получены только при испытаниях магнитного материала в замкнутой цепи.

При измерении же силы магнитного поля на поверхности магнита тесламетр обычно показывает от 200 до 500 мТл (2000-5000 Гс). К тому же показания остаточной магнитной индукции сильно зависят от формы и размера магнита — чем он больше, тем сильнее будет его магнитное поле. Потери магнитных свойств со временем обычно не превышают 2-3% за 10 лет эксплуатации (естественно, при условии соблюдения температурного режима). Отличительной особенностью неодимовых магнитов является довольно низкая рабочая температура.

При сильном нагреве начинается размагничивание материала и чем горячее, тем быстрее протекает этот процесс. Значение температуры, при котором материал начинает терять свои магнитные свойства, называется «точкой Кюри». При этом происходит так называемый «фазовый переход» — быстрое разрушение магнитной структуры вещества. Магниты из обычных марок неодимового сплава, типа N38, N42 и т.п. выдерживают нагрев не выше 80 градусов Цельсия.

Это очень ограничивает их применение в оборудовании подверженному сильному нагреву — для нормального функционирования в таких условиях, требуется обеспечить дополнительное охлаждение установки. Существуют и высокотемпературные марки сплавов, такие как N38H (120°С), N38UH (180°C). Если же требуются более высокие рабочие температуры, то следует рассматривать магниты из материала Альнико (ЮНДК) выдерживающие нагрев до 550°C. Неодимовые магниты чаще всего имеют антикоррозионное покрытие, никелевое или цинковое, реже эпоксидное.

Магниты могут выпускаться и совсем совсем без покрытия, но так как они имеют свойство ржаветь во влажной среде, то пользуются они гораздо меньшим спросом. Направление магнитного поля может быть аксиальным (вдоль размера h), диаметральным (вдоль размера D) и радиальным (вдоль размера r).

Магнитные характеристики различных неодимовых сплавов

Маркаматериала Остаточная магнитная индукция Br Коэрцитивная сила(по току) Hcj Максимальное энергетическое произведение (BH) max. Рабочая температура t
Tl (Тесла) kG (кГаусс) kA/m kOe MGOe Kj/m3 С
N35 1,17-1,20 11,7-12,0 955 12 35 279 80
N35M 1,17-1,20 11.7-12,0 1115 14 35 279 100
N35H 1,15-1,17 11,5-11,7 1355 17 35 279 120
N35SH 1,17-1,20 11,7-12,0 1590 20 35 279 150
N35UH 1,17-1,20 11,7-12,0 1990 25 35 279 180
N38 1,17-1,20 12,2-12,6 955 12 38 303 80
N38M 1,22-1,26 12,2-12,6 1115 14 38 303 100
N38H 1,22-1,26 12,2-12,6 1355 17 38 303 120
N38SH 1,22-1,26 12,2-12,6 1590 20 38 303 160
N38UH 1,22-1,26 12,2-12,6 1990 25 38 303 180
N40 1,26-1,29 12,6-12,9 955 12 40 318 80
N40M 1,26-1,29 12,6-12,9 1115 14 40 318 100
N40H 1,26-1,29 12,6-12,9 1355 17 40 318 120
N40SH 1,26-1,29 12,6-12,9 1590 20 40 318 160
N40UH 1,26-1,29 12,6-12,9 1990 25 40 318 180
N42 1,30-1,33 13,0-13,3 955 12 42 334 80
N42M 1,30-1,33 13,0-13,3 1115 14 42 334 100
N42H 1,30-1,33 13,0-13,3 1355 17 40 318 120
N42SH 1,3-1,33 13,0-13,3 1590 20 42 334 160
N45 1,33-1,37 13,3-13,7 955 12 45 358 80
N45M 1,33-1,37 13,3-13,7 1115 14 45 358 100
N45H 1,33-1,37 13,3-13,7 1355 17 45 358 120
N48 1,36-1,42 13,6-14,2 955 12 48 382 80
N48M 1,36-1,42 13,6-14,2 1115 14 48 382 100
N48H 1,36-1,42 13,6-14,2 1355 17 48 382 120
N50 1,41-1,45 14,1-14,5 876 11 50 398 70

Применение неодимовых магнитов

Неодимовые магниты получили широкое распространение в различных сферах человеческой деятельности. Благодаря своим высоким эксплуатационным показателям они массово используются при производстве радиоаппаратуры, измерительных приборов, бытовой техники, медицинского оборудования, мобильных телефонов и прочих высокотехнологичных гаджетов. Высоким спросом пользуются эти магниты у производителей ветрогенераторов.

Используется неодим и для производства поисковых магнитов, для справки — магнитная рыбалка это интересное, набирающее популярность, хобби. Для обеспечения потребностей потребителей, неодимовые магниты производятся самых различных форм и размеров и способны удовлетворить самый взыскательный спрос. Магниты могут быть изготовлены в форме диска, куба, стержня, цилиндра, призмы, бруска, кольца, сектора или шара.

Кроме стандартных геометрических форм, возможно изготовление и более сложных и причудливых конфигураций — свойства материала это позволяют.

Техника безопасности про обращении с неодимовыми магнитами

Основное преимущество неодимовых магнитов это их колоссальная магнитная сила, она же представляет и наибольшую опасность в неумелых или неосторожных руках. Чем больше магнит, тем больший вред здоровью он может причинить. Большие неодимовые магниты при соударении друг о друга способны серьёзно травмировать конечности попавшие в этот момент между ними. Удар будет примерно соответствовать удару кувалды или большого молотка о наковальню. Нужно понимать, что магниты смыкаются со страшной силой и происходит это в одно мгновение.

Даже опытный в обращении с магнитами человек не всегда успевает среагировать и отдёрнуть руку в нужный момент. Ещё одна неприятная особенность заключается в том, что если после удара молотком человек получает просто ушиб пальца, то в случае с магнитами, этот палец после удара остаётся зажат между ними как в тисках и вытащить его от туда довольно сложная задача. Если пытаться просто выдернуть палец из магнитов, то с большой долей вероятности они отщипнут кусок кожи с кончика пальца или же сорвут ноготь.

Что бы избежать подобных последствий держите большие неодимовые магниты подальше друг от друга и от железных предметов, рекомендуемое расстояние не менее 1 метра. Если это всё же произошло и рука осталась зажата между магнитами, то в первую очередь нужно вставить между магнитами какие нибудь прокладки из немагнитных материалов — пластмассы или дерева, они предотвратят дальнейшее смыкание магнитов. После этого можно попытаться выдернуть руку самостоятельно или дожидаться приезда сотрудников МЧС. Небольшие магниты, размером 20-40 мм.

, тоже могут представлять опасность и при неаккуратном обращении оставляют на руках ушибы, порезы или гематомы. Очень важно обезопасить детей от контакта с неодимовыми магнитами. Даже маленькие магнитики могут представлять серьёзную угрозу здоровью ребёнка. Проглатывание маленьких магнитов может привести к крайне негативным последствиям, в этом случае нужно безотлагательно вызывать скорую помощь.

Держите неодимовые магниты в недоступном для детей месте!Большие неодимовые магниты создают вокруг себя сильное магнитное поле, во избежание поломок держите их подальше от чувствительной техники — компьютеров, внешних дисков, часов, смартфонов, кардиостимуляторов, навигационного оборудования, банковских карт и т.п. Кроме того неодимовые магниты довольно хрупкие и при сильных ударах могут раскалываться, что тоже неприятно и накладно в денежном отношении. Будьте всегда крайне внимательны и осторожны при обращении с мощными магнитами.

Все разделы

Читайте также  Изготовление звездочек для цепной передачи

Источник: https://supermagnet.ru/content/info.html

Применение кобальта при производстве постоянных магнитов

Для изготовления постоянных магнитов используют

Калькулятор металлопроката

С высоким эл. сопротивлением

В статье рассматривается применение кобальта для производства постоянных магнитов. Приведено описание магнитных свойств кобальта, примеры конкретных сплавов, рассмотрены их достоинства и недостатки.

Постоянный магнит – это искусственное изделие из магнитотвердого материала, обладающее высокой интенсивностью магнитной энергии и длительным периодом размагничивания.

Современные постоянные магниты изготавливают методом классического литья или по технологии порошковой металлургии путем штамповки или прессования (с последующим спеканием) мелкодисперсионных порошков различных сплавов и металлов, обладающих большим магнитным насыщением.

Мощность и физические характеристики магнита определяются химическим составом, кристаллической структурой и пропорциями его компонентов. Произведенные по технологии прессования порошков постоянные магниты могут быть выполнены практически в любой геометрической форме (диск, цилиндр, куб, призма, кольцо и т.п.) и иметь различное направление магнитного поля.

Для изготовления постоянных магнитов используют металлы с выраженной ферромагнитной структурой — ферромагнетики. При сплавлении ферромагнетиков происходит взаимная переориентация атомов их кристаллических решеток, вследствие чего магнитная восприимчивость сплава многократно увеличивается, он приобретает способность намагничиваться до насыщения даже при малых внешних магнитных полях и длительное время сохранять высокие магнитные свойства. К ферромагнетикам относятся железо, никель, кобальт, а также некоторые из их сплавов и соединений с неферромагнитными материалами.

Рисунок 1. Схема магнита.

Неметаллические соединения кобальта были известны в Египте и Китае более тысячи лет назад. Добавляя в жидкий раствор пигменты кобальта, в Северной Месопотамии делали голубое покрытие для керамических плиток, а в Поднебесной – подглазуровочный слой для знаменитого китайского фарфора. Впервые полученный в 1735 г.

шведским химиком Брандтом металлический кобальт вплоть до начала ХХ века практически не использовали в металлургии из-за неудачных экспериментов создать сплав с железом.

Сегодня кобальт является важным компонентом жаростойких и инструментальных сталей, а еще он стал одним из наиболее востребованных металлов для изготовления постоянных магнитов.

Кобальтовые стали и сплавы – это на текущий момент лучшие материалы для постоянных магнитов, на изготовление которых идет более 20% всего добываемого кобальта. Металлический кобальт обладает большой индукцией насыщения, которая выражается в его уникальной способности при однократном намагничивании приобретать магнитную силу, многократно превосходящую мощность внешнего поля. Еще одно важное свойство кобальта – он обладает большой величиной коэрцитивной силы (Hc), препятствующей размагничиванию и перемагничиванию материала.

Слово «коэрцитивный» происходит от латинского «coercitio», которое переводится как удерживание, поэтому данную характеристику можно описать как сохранение (удерживание) магнитной энергии. Магнитная хромистокобальтовая сталь ЕХ5К5, содержащая по 5-6% кобальта и хрома обладает коэрцитивной силой до 170 эрстед (А/м) при остаточной индукции (Br) до 8500 гаусс (тесла). Магнитный сплав кобальта с платиной по силе магнитной энергии вообще не имеет конкурентов, однако имеет довольно большую стоимость, что препятствует его широкому применению.

Точка Кюри у кобальта, существующая для каждого ферромагнетика, выраженная значением температуры фазового перехода, при достижении которой намагниченный до насыщения материал становится парамагнетиком и теряет свои магнитные свойства, значительно выше, чем у других металлов с ферромагнитной структурой. Для примера: точка Кюри для кобальта равна 1127°С, для железа 770°С, для никеля 358°С, для гадолиния 19°С. Этим объясняется стабильность свойств постоянных магнитов из кобальтосодержащих сплавов в широком температурном диапазоне.

Современные технологии позволяют точно определять химический состав сплава для постоянных магнитов, придавая им те характеристики, которые востребованы потребителями конечной продукции. Наиболее распространенными магнитами сегодня являются изделия из сплавов систем железо-никель-алюминий-кобальт (Fe-Ni-Al-Co) и самарий-кобальт (Sm-Co).

Магнитный сплав железо-никель-алюминий-кобальт (Fe-Ni-Al-Co)

Для обозначения магнитных сплавов на основе железа (Fe) с добавлением никеля (Ni), алюминия (Al) и кобальта (Co) чаще всего используют зарубежный термин «алнико» (англ. AlNiCo), по начальным буквам металлов: алюминия (10-18%), никеля (15-34%) и кобальта (18-40%). Российское название сплава – ЮНДК. Указанные выше пропорции сплава обеспечивают постоянным магнитам большую величину индукции насыщения, а как следствие – большое значение остаточной индукции. Кобальт в этом аспекте играет ключевую роль, поскольку чем больше в сплаве Со, тем выше индукция его насыщения и магнитная энергия, способная достигать значений 4000—5200 Дж/м3.

Плюсы и минусы магнитов железо-никель-алюминий-кобальт (Fe-Ni-Al-Co)
К недостаткам сплава Fe-Ni-Al-Co можно отнести не самую высокую коэрцитивную силу (Нс), колеблющуюся в пределах 36-58 эрстед (А/м), которую, кстати, можно повысить при производстве путем увеличения содержания алюминия и никеля.

Магниты из сплава Fe-Ni-Al-Co, произведенные прессованием по порошковой технологии, имеют механическую прочность в несколько раз большую, чем литые, но уступают им по силе магнитной энергии на 10-20%. Безусловным плюсом постоянных магнитов Fe-Ni-Al-Co является высокая термическая стабильность, способность эффективно работать при температурах до 550°С, при этом их температура Кюри составляет 810 — 900°С.

Постоянные магниты на основе сплава Fe-Ni-Al-Co обладают хорошей химической и коррозионной стойкостью, а также сравнительно невысокой стоимостью.

Магнитный сплав самарий-кобальт (Sm-Co)

Использование сплава самарий-кобальт (Sm-Co) для производства постоянных магнитов обуславливается тем, что он позволяет создавать относительно легкие изделия с очень большой магнитной силой, в том числе крайне малых типоразмеров для миниатюрной техники и устройств (часов, наушников, смартфонов, компьютеров).

Самарий (Sm) – редкоземельный металл, внешне напоминающий свинец, а по механическим свойствам схожий с цинком.

Постоянные магниты на основе сплава самария и кобальта в несколько раз превышают магнитные параметры ферритовых магнитов и лидируют в классе редкоземельных магнитов по максимальному значению коэрцитивной силы, которая у них может достигать 1000-1200 кЭ (кА/м), что на порядок выше аналогичного показателя сплава ЮНДК (Fe-Ni-Al-Co).

Достоинства и недостатки магнитов самарий-кобальт (Sm-Co)
Достоинства магнитов Sm-Co – хорошая прочность (порошковая металлургия) и большая величина остаточной индукции, отличная термическая стабильность при максимальных рабочих температурах 250-350°C, что объясняется температурой Кюри сплава в 720-800°C и выше. Магниты Sm-Co устойчивы к коррозии, воздействию климатических факторов, а потому не нуждаются в нанесении защитного покрытия, что позволяет их использовать в агрессивных средах с большими температурами, например, в нефтяных пластах. К недостаткам постоянных магнитов Sm-Co можно отнести их высокую стоимость.

С использованием кобальта производят большое количество магнитов, которые вследствие высоких магнитных свойств нашли широкое применение в электромашиностроении, станкостроении, приборостроении, в пищевой, нефтегазовой, космической отрасли и других сферах, где постоянный магнит используют в качестве элемента:

  • электродвигателей и генераторов;
  • преобразователей постоянного тока;
  • пускозащитной аппаратуры;
  • систем контроля целостности трубопроводов;
  • систем магнитной обработки и очистки различных сред;
  • дугогасительных устройств;
  • систем безбатарейной телефонной связи;
  • акустических систем и реле;
  • компьютерных комплектующих;
  • электросчетчиков, магнитоиндукционных тахометров, омметров, расходомеров (в металлургии), различной измерительной аппаратуры;
  • бытовых электроприборов.

Современные постоянные магниты чрезвычайно разнообразны по способу производства, по физическим и химическим характеристикам, по форме, цене, благодаря чему практически для любой цели можно подобрать оптимальное изделие. Количество сфер применения постоянных магнитов постоянно расширяется, а кобальтовые сплавы Fe-Ni-Al-Co и Sm-Co на сегодняшний день играют главную роль в развитии этой тенденции.

Рисунок 2. Электрический двигатель.

Источник: https://www.metotech.ru/art_kobalt_2.htm